Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase

Martha Clementine Simpson, Christopher John Harding, Ricardo Melo Czekster, Laura Remmel, Bela E. Bode, Clarissa Melo Czekster

Research output: Contribution to journalArticlepeer-review

Abstract

Intracellular leucine aminopeptidases (PepA) are metalloproteases from the family M17. These enzymes catalyze peptide bond cleavage, removing N-terminal residues from peptide and protein substrates, with consequences for protein homeostasis and quality control. While general mechanistic studies using model substrates have been conducted on PepA enzymes from various organisms, specific information about their substrate preferences and promiscuity, choice of metal, activation mechanisms, and the steps that limit steady-state turnover remain unexplored. Here, we dissected the catalytic and chemical mechanisms of PaPepA: a leucine aminopeptidase from Pseudomonas aeruginosa. Cleavage assays using peptides and small-molecule substrate mimics allowed us to propose a mechanism for catalysis. Steady-state and pre-steady-state kinetics, pH rate profiles, solvent kinetic isotope effects, and biophysical techniques were used to evaluate metal binding and activation. This revealed that metal binding to a tight affinity site is insufficient for enzyme activity; binding to a weaker affinity site is essential for catalysis. Progress curves for peptide hydrolysis and crystal structures of free and inhibitor-bound PaPepA revealed that PaPepA cleaves peptide substrates in a processive manner. We propose three distinct modes for activity regulation: tight packing of PaPepA in a hexameric assembly controls substrate length and reaction processivity; the product leucine acts as an inhibitor, and the high concentration of metal ions required for activation limits catalytic turnover. Our work uncovers catalysis by a metalloaminopeptidase, revealing the intricacies of metal activation and substrate selection. This will pave the way for a deeper understanding of metalloenzymes and processive peptidases/proteases.
Original languageEnglish
Pages (from-to)3188-3205
Number of pages18
JournalBiochemistry
Volume62
Issue number22
Early online date4 Nov 2023
DOIs
Publication statusPublished - 21 Nov 2023

Bibliographical note

Copyright © 2023 The Authors. Published by American Chemical Society. This publication is licensed under CC-BY 4.0.

Funding: C.M.C. is funded by the Wellcome Trust (210486/Z/18/Z and [204821/Z/16/Z] to the University of St Andrews). M.C.S. is funded by a PhD studentship from the University of St Andrews. B.E.B. acknowledges equipment funding by BBSRC (BB/R013780/1)

Keywords

  • Catalysis
  • Hydrolysis
  • Kinetics
  • Leucine/metabolism
  • Leucyl Aminopeptidase/chemistry
  • Metals/metabolism
  • Peptides/metabolism
  • Substrate Specificity

Fingerprint

Dive into the research topics of 'Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase'. Together they form a unique fingerprint.

Cite this