Abstract
Alzheimer’s Disease (AD) is the most common form of dementia currently affecting more than 35 million people worldwide. Hypometabolism is a major feature of AD and appears decades before cognitive decline and pathological lesions. This has a detrimental impact on the brain which has a high energy demand. Current models of AD fail to mimic all the features of the disease, which has an impact on the development of new therapies. Human stem cell derived models of the brain have attracted a lot of attention in recent years as a tool to studyneurodegenerative diseases.
In this thesis, neurons and astrocytes derived from the human embryonal carcinoma cell line (NT2/D1) were utilised to determine the metabolic coupling between neurons and astrocytes with regards to responses to hypoglycaemia, neuromodulators and increase in neuronal activity.
This model was then used to investigate the effects of Aß(1-42) on the metabolism of these NT2-derived co-cultures as well as pure astrocytes. Additionally primary cortical mixed neuronal and glial cultures were utilised to compare this model to a
widely accepted in vitro model used in Alzheimer’s disease research. Co-cultures were found to respond to Aß(1-42) in similar way to human and in vivo
models. Hypometabolism was characterised by changes in glucose metabolism, as
well as lactate, pyruvate and glycogen. This led to a significant decrease in ATP and the ratio of NAD+/NADH. These results together with an increase in calcium
oscillations and a decrease in GSH/GSSG ratio, suggests Aß-induces metabolic and
oxidative stress. This situation could have detrimental effects in the brain which has a high energy demand, especially in terms of memory formation and antioxidant
capacity.
Date of Award | 30 Jul 2013 |
---|---|
Original language | English |
Awarding Institution |
|
Supervisor | Rhein Parri (Supervisor) & Eric J Hill (Supervisor) |
Keywords
- Alzheimer's disease
- ANLS
- astrocytes
- hypometabolism
- stem cells