Combined bioreaction and separation in centrifugal fields

  • S.J. Setford

Student thesis: Doctoral ThesisDoctor of Philosophy

Abstract

The aim of this work has been to investigate the principle of combined centrifugal bioreaction-separation. The production of dextran and fructose by the action of the enzyme dextransucrase on sucrose was employed to elucidate some of the principles of this type of process. Dextran is a valuable pharmaceutical product used mainly as a blood volume expander and blood flow improver whilst fructose is an important dietary product. The development of a single step process capable of the simultaneous biosynthesis of dextran and the separation of the fructose by-product should improve dextran yields whilst reducing capital and processing costs. This thesis shows for the first time that it is possible to conduct successful bioreaction-separations using a rate-zonal centrifugation technique. By layering thin zones of dextrasucrase enzyme onto sucrose gradients and centrifuging, very high molecular weight (MW) dextran-enzyme complexes were formed that rapidly sedimented through the sucrose substrate gradients under the influence of the applied centrifugal field. The low MW fructose by-product sedimented at reduced rates and was thus separated from the enzyme and dextran during the reaction. The MW distribution of dextran recovered from the centrifugal bioreactor was compared with that from a conventional batch bioreactor. The results indicated that the centrifugal bioreactor produced up to 100% more clinical dextran with MWs of between 12 000 and 98 000 at 20% w/w sucrose concentrations than conventional bioreactors. This was due to the removal of acceptor fructose molecules from the sedimenting reaction zone by the action of the centrifugal field. Higher proportions of unwanted lower MW dextran were found in the conventional bioreactor than in the centrifugal bioreactor-separator. The process was studied on a number of alternative centrifugal systems. A zonal rotor fitted with a reorienting gradient core proved most successful for the evaluation of bioreactor performance. Results indicated that viscosity build-up in the reactor must be minimised in order to increase the yields of dextran per unit time and improve product separation.
A preliminary attempt at modelling the process has also been made.
Date of AwardSept 1992
Original languageEnglish

Keywords

  • biochemical reactor
  • centrifugal reactor
  • dextran
  • dextransucrase
  • reactor-separator

Cite this

'