Quantitative assessment of the pharmacotherapy of biopolar disorder and schizophrenia

  • Nalinee Poolsup

Student thesis: Doctoral ThesisDoctor of Philosophy


The work present in this thesis was aimed at assessing the efficacy of lithium in the acute treatment of mania and for the prophylaxis of bipolar disorder, and
investigating the value of plasma haloperidol concentration for predicting response to treatment in schizophrenia. The pharmacogenetics of psychotropic drugs is critically appraised to provide insights into interindividual variability in response to pharmacotherapy,
In clinical trials of acute mania, a number of measures have been used to assess the severity of illness and its response to treatment. Rating instruments need to be validated in order for a clinical study to provide reliable and meaningful estimates of treatment effects, Eight symptom-rating scales were identified and critically assessed, The Mania Rating Scale (MRS) was the most commonly used for
assessing treatment response, The advantage of the MRS is that there is a relatively extensive database of studies based on it and this will no doubt ensure that it remains a gold standard for the foreseeable future. Other useful rating scales are available for measuring mania but further cross-validation and validation against clinically meaningful global changes are required.
A total of 658 patients from 12 trials were included in an evaluation of the efficacy of lithium in the treatment of acute mania. Treatment periods ranged from 3 to 4 weeks. Efficacy was estimated using (i) the differences in the reduction in mania severity scores, and (ii) the ratio and difference in improvement response rates. The response rate ratio for lithium against placebo was 1.95 (95% CI 1.17 to 3.23). The mean number needed to treat was 5 (95% CI 3 to 20). Patients were twice as likely to obtain remission with lithium than with chlorpromazine (rate ratio = 1.96, 95% CI 1.02 to 3.77). The mean number needed to treat (NNT) was 4 (95% CI 3 to 9). Neither carbamazepine nor valproate was more effective than lithium. The response rate ratios were 1.01 (95% CI 0.54 to 1.88) for lithium compared to carbarnazepine and 1.22 (95% CI 0.91 to 1.64) for lithium against valproate. Haloperidol was no better than lithium on the basis of improvement based on assessment of global severity. The differences in effects between lithium and risperidone were -2.79 (95% CI -4.22 to -1.36) in favour of risperidone with respect to symptom severity improvement and -0.76 (95% CI -1.11 to -0,41) on the basis of reduction in global severity of disease. Symptom and global severity was at least as well controlIed with lithium as with verapamil. Lithium caused more side-effects than placebo and verapamil, but no more than carbamazepine or valproate.
A total of 554 patients from 13 trials were included in the statistical analysis of
lithium's efficacy in the prophylaxis of bipolar disorder. The mean follow-up period was 5-34 months. The relapse risk ratio for lithium versus placebo was 0.47 (95% CI 0.26 to 0.86) and the NNT was 3 (95% CI 2 to 7). The relapse risk ratio for lithium versus imipramine was 0.62 (95% CI 0.46 to 0.84) and the NNT was 4 (951% Cl 3 to 7), The combination of lithium and imipramine was no more effective than lithium alone. The risk of relapse was greater with lithium alone than with the lithium-divalproate combination. A risk difference of 0.60 (95% CI 0.21 to 0.99) and an NNT of 2 (95% CI 1 to 5) were obtained. Lithium was as effective as carbamazepine.
Based on individual data concerning plasma haloperidol concentration and percent improvement in psychotic symptoms, our results suggest an acceptable concentration range of 11.20-30.30 ng/mL A minimum of 2 weeks should be allowed before evaluating therapeutic response. Monitoring of drug plasma levels seems not to be necessary unless behavioural toxicity or noncompliance is suspected.
Pharmacokinetics and pharmacodynamics, which are mainly determined by genetic factors, contribute to interindividual and interethnic variations in clinical response to drugs. These variations are primarily due to differences in drug metabolism. Variability in pharmacokinetics of a number of drugs is associated with oxidation polymorphism. Debrisoquine/sparteine hydroxylase (CYP2D6) and the S-mephenytoin hydroxylase (CYP2C19) are polymorphic P450 enzymes with
particular importance in psychopharmacotherapy. The enzymes are responsible for the metabolism of many commonly used antipsychotic and antidepressant drugs. The incidence of poor metabolisers of debrisoquine and S-mephenytoin varies widely among populations. Ethnic variations in polymorphic isoenzymes may, at least in part, explain ethnic differences in response to pharmacotherapy of antipsychotics and antidepressant drugs.
Date of AwardApr 2000
Original languageEnglish
SupervisorAlain Li Wan Po (Supervisor)


  • lithium,
  • haloperidol
  • rating scales
  • evidence-based pharmacotherapy
  • pharmacogenetics

Cite this