Abstract
In industrialised countries age-related macular disease (ARMD) is the leading cause of visual loss in older people. Because oxidative stress is purported to be associated with an increased risk of disease development the role of antioxidant supplementation is of interest. Lutein is a carotenoid antioxidant that accumulates within the retina and is thought to filter blue light. Increased levels of lutein have been associated with reduced risk of developing ARMD and improvements in visual and retinal function in eyes with ARMD.The aim of this randomised controlled trial (RCT) was to investigate the effect of a lutein-based nutritional supplement on subjective and objective measures of visual function in healthy eyes and in eyes with age-related maculopathy (ARM) – an early form of ARMD. Supplement withdrawal effects were also investigated.
A sample size of 66 healthy older (HO), healthy younger (HY), and ARM eyes were randomly allocated to receive a lutein-based supplement or no treatment for 40 weeks. The supplemented group then stopped supplementation to look at the effects of withdrawal over a further 20 weeks. The primary outcome measure was multifocal electroretinogram (mfERG) N1P1 amplitude. Secondary outcome measures were mfERG N1, P1 and N2 latency, contrast sensitivity (CS), Visual acuity (VA) and macular pigment optical density (MPOD).
Sample sizes were sufficient for the RCT to have an 80% power to detect a significant clinical effect at the 5% significance level for all outcome measures when the healthy eye groups were combined, and CS, VA and mfERG in the ARM group.
This RCT demonstrates significant improvements in MPOD in HY and HO supplemented eyes. When HY and HO supplemented groups were combined, MPOD improvements were maintained, and mfERG ring 2 P1 latency became shorter. On withdrawal of the supplement mfERG ring 1 N1P1 amplitude reduced in HO eyes. When HO and HY groups were combined, mfERG ring 1 and ring 2 N1P1 amplitudes were reduced. In ARM eyes, ring 3 N2 latency and ring 4 P1 latency became longer. These statistically significant changes may not be clinically significant.
The finding that a lutein-based supplement increases MPOD in healthy eyes, but does not increase mfERG amplitudes contrasts with the CARMIS study and contributes to the debate on the use of nutritional supplementation in ARM.
Date of Award | Jan 2012 |
---|---|
Original language | English |
Supervisor | Hannah Bartlett (Supervisor), Jonathan M Gibson (Supervisor) & Frank Eperjesi (Supervisor) |
Keywords
- age-related macular disease
- lutein
- electrophysiology